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Abstract: This study examines the impact of robotic capital, physical capital, technological 

change, human capital, and trade globalization on labor income share dynamics in the era of 

robotic automation. Focusing on China, Germany, Japan, South Korea, and the United States 

– countries responsible for 79.2% of global industrial robotic installations from 2010 to 2023 

– our analysis employs key variables such as labor income share, annual industrial robot 

installations, gross fixed capital formation, researchers in research and development, human 

capital index, and trade of goods and services. Estimations using Arellano-Bond, Generalized 

Estimating Equations, Driscoll-Kraay, and Arellano-Froot-Rogers methods reveal a 

consistent negative association between labor income share and robotic capital. Conversely, 

a positive relationship is observed with research and development. Notably, the study 

underscores the consistent negative impact of physical capital accumulation on labor income 

share across the Arellano-Bond, Driscoll-Kraay, and Arellano-Froot-Rogers methods. 

Furthermore, globalization, as assessed by the Arellano-Bond, Generalized Estimating 

Equations, and Driscoll-Kraay methods, is identified as a factor adversely affecting labor 

income share. 
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1. Introduction  

In recent years, the remarkable rise of robotic automation has become a focal point 

in discussions surrounding the future of work and economic productivity. The 

integration of sophisticated robots into various sectors of the economy prompts a 

critical examination of how this technological advancement is reshaping the 

dynamics of labor share. In this research, we delve into the multifaceted impacts of 

robotic automation, particularly its implications for labor distribution, productivity, 

and the broader economic landscape. The advent of industrial robots, characterized 

by their flexibility, versatility, and autonomy, has ushered in an era where machines 

are not just aids but central players in production processes. This shift raises pertinent 

questions about the distribution of economic benefits and the evolving role of human 

labor in the automated landscape. The interaction between robotic technologies and 

labor markets is complex, involving a nuanced interplay of job displacement, 

creation, and transformation. Research indicates that while robotic automation 

contributes to productivity growth, its impact on employment is not uniformly 

negative. In certain scenarios, increased robot use has led to a decline in the share of 

low-skilled labor, while simultaneously fostering new job opportunities in other 

sectors, particularly in services. This dichotomy underscores the adaptive nature of 

labor markets and the potential for technology to engender both challenges and 

opportunities. Furthermore, the effects of automation are not homogenous across 

different firm sizes and sectors. Small and medium enterprises (SMEs), for instance, 

demonstrate a unique relationship with robotic technology, often experiencing 

heightened productivity and employment rates. On a larger scale, the integration of 

robots has been linked to the emergence of 'superstar firms' – entities that leverage 

automation to achieve significant gains in productivity and market dominance, 

consequently influencing the functional income distribution. As we continue to 

navigate this transformative era, it is imperative to consider the broader implications 

of robotic automation on labor dynamics. The key lies in understanding and 

harnessing the potential of these technologies to create a more efficient, inclusive, 

and balanced economic framework. This exploration offers insights not only into the 

current state of robotic automation but also into the trajectories it may carve for the 

future of work and economic distribution. 

The aim of our study is to analyze the impact of robotic capital, traditional physical 

capital, technological change, human capital, and trade globalization on labor 

income share dynamics amidst the robotic automation era. Concentrating on the 

period from 2010 to 2023, our focus narrows to five key nations—China, Germany, 

Japan, South Korea, and the United States—which collectively account for 79.2% of 

the global installations of industrial robots. Utilizing variables like annual industrial 

robot installations, gross fixed capital formation, R&D researchers, human capital 
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index, and trade in goods and services, our analysis provides an integrated 

examination of the diverse impacts of robotic automation on the labor income share. 

By employing a varied array of estimation methodologies and conducting a 

comparative analysis across these five leading economies in industrial robotic 

applications, our research uncovers detailed insights into how robotic capital 

interacts with other critical economic factors to influence the dynamics of labor 

income share. This comprehensive approach not only elucidates the complex effects 

of automation on labor markets but also highlights the balancing roles of R&D and 

human capital development in mitigating the adverse impacts of increased industrial 

robot installations on the labor income share. 

 

2. Literature review  

The integration of robotic automation into the global economy has initiated profound 

changes in labor dynamics. In this section, we synthesize key findings from leading 

research to understand these changes, focusing on labor share, productivity and 

employment patterns in the age of robotic automation. Graetz & Michaels (2015) in 

their seminal work "Robots at Work" found that modern industrial robots contribute 

significantly to labor productivity growth, approximately 0.36 percentage points 

annually. Contrary to the common fear of widespread job losses, their research 

suggests that robots did not significantly reduce total employment, although they did 

influence the share of low-skilled workers. Dauth, et al. (2021) observed the 

adjustments in local labor markets to industrial robots in Germany. Their study 

revealed displacement effects in manufacturing, counterbalanced by new job 

creation in the service sector. The impact was particularly pronounced among young 

workers entering the labor force. Ballestar, et al. (2020) in their study on small and 

medium enterprises (SMEs) found that robotic devices are linked with higher 

performance and productivity. Interestingly, in 2015, robotics accounted for a 5% 

increase in SME productivity level. Acemoglu, et al. (2022) provided a 

comprehensive view of the adoption of automation technologies across US firms. 

They documented that larger firms are more likely to adopt these technologies, 

impacting labor shares and leading to higher wages and lower labor shares in these 

firms. Stiebale, Suedekum & Woessner (2020) in their research on "Robots and the 

Rise of European Superstar Firms," observed that robots disproportionately increase 

productivity in already productive firms, leading to increased market dominance and 

shifts in functional income distribution from wages to profits. Giacomo & Lerch 

(2021) explored the effect of robot adoption on human capital accumulation, 

particularly college enrollment. Their findings suggest that increased robot exposure 

is linked to a substantial rise in enrollment rates in post-secondary education. Dao, 

Das & Kóczán (2019) examined the declining labor share in the context of 



 
 

 
 

 

Erkişi, K., Çetin, M., (2025) 

The Dynamics of Labor Income Share in an Era of Robotic Automation: A Panel Data Analysis in High-Level 
Automation Countries 

 

 
 

Studia Universitatis “Vasile Goldis” Arad. Economics Series Vol 35 Issue 1/2025 

ISSN: 1584-2339; (online) ISSN: 2285 – 3065 

Web: publicatii.uvvg.ro/index.php/studiaeconomia. Pages 113-139 

 

116 

routinization and globalization. They found that technological progress and 

routinization explain the decline in advanced economies, while capital deepening 

and globalization drive the trend in emerging markets. Rivera (2019) analyzed the 

impact of automation on the Chilean labor market. The study used a general 

equilibrium model to understand the effects of robotic capital as a substitute for labor 

and traditional capital as complementary to it, revealing significant impacts on 

employment and GDP. Berg, Buffie & Zanna (2018) presented a model illustrating 

how robot capital, distinct from traditional capital, affects inequality and output. 

Their results indicate that automation can lead to growth but also exacerbate 

inequality. Ergül & Goksel (2020) used a DSGE model to analyze the effects of 

automation on the labor share of national income. They found that increased 

automation leads to a decline in the labor share, confirming trends observed in 

developed and developing countries. Heer, Irmen & Süssmuth (2022) provided 

evidence that the decline in the US labor share is influenced by factor taxation, 

automation capital, and population growth, with variance decompositions revealing 

significant contributions of taxing to changes in income shares and automation 

capital. Bhardwaj, Avasthi & Goundar (2019) examined the security risks associated 

with the rapid transformation of economies through robotic technology. They 

emphasized the importance of cybersecurity in robotic platforms, especially in 

critical applications and missions. Gunadi & Ryu (2021) investigated the potential 

effects of robotic technology on health, particularly for the low-skilled population. 

They found a positive correlation between robot penetration in local economies and 

the health of the low-skilled population, with a reduction in the share of individuals 

reporting poor health.  

These empirical studies collectively offer a comprehensive understanding of how 

labor share, robotic and physical capital, technological change, education, and trade 

globalization interact and shape economic outcomes in different contexts. They 

provide valuable insights for policymakers and stakeholders aiming to navigate the 

complexities of a rapidly changing economic landscape. The current body of 

research underscores a nuanced picture of the impact of robotic automation. While 

boosting productivity and altering the nature of jobs, robots have not led to 

significant overall employment reductions but have indeed transformed the structure 

of labor markets. The ongoing challenge for policymakers and businesses is to adapt 

to these changes, ensuring that the benefits of automation are broadly shared across 

the economy. 

The theoretical framework surrounding the impact of robotic automation on labor 

share, economic dynamics, and societal implications is rooted in several key 

concepts and theories from economics, sociology, and technological studies. This 

background helps to contextualize and understand the empirical findings in the field. 
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Schumpeter’s (1942) concept of "creative destruction," detailed in his work 

"Capitalism, Socialism and Democracy", is crucial for understanding how 

technological advancements like robotics can disrupt existing economic structures, 

leading to the obsolescence of old industries and the emergence of new ones. Ricardo 

(1817), in "Principles of Political Economy and Taxation", discusses the substitution 

of labor by capital. This theory is particularly relevant in understanding how 

robotics, representing a form of capital, replaces human labor in various tasks, 

thereby affecting labor share and income distribution. Becker's (1964) "Human 

Capital: A Theoretical and Empirical Analysis" focuses on how investments in 

education and training are crucial for enhancing workers' productivity. This theory 

is significant in the context of robotics, where a higher level of skill and education 

is required to work alongside advanced technologies. Katz and Murphy (1992), in 

"Changes in Relative Wages, 1963-1987: Supply and Demand Factors", elaborate 

on how technological advancements tend to favor skilled over unskilled labor. This 

concept is directly applicable to the era of robotic automation, which often demands 

higher-skilled labor. Friedman (2005) in "The World is Flat" provides insights into 

how globalization affects labor markets. Robotics, as a part of global industrial 

transformation, significantly influences these dynamics by reshaping job distribution 

and characteristics across global borders. Developed by Trist and Bamforth (1951) 

in "Some Social and Psychological Consequences of the Longwall Method of Coal-

Getting", this theory examines the relationship between society and technology. It is 

relevant to understanding how robotic automation impacts social structures and labor 

relations. Piketty's (2014) "Capital in the Twenty-First Century" discusses how 

economic growth and inequality are intertwined. This perspective is essential for 

analyzing how robotic automation, by potentially displacing jobs, can contribute to 

increased economic inequality. 

Theories of globalization examine the impact of an increasingly interconnected 

world economy on labor markets (Krugman, 1991; Stiglitz, 2002). Robotics, as part 

of this narrative, plays a significant role in reshaping labor dynamics, with global 

supply chains and trade policies influencing the distribution and nature of jobs. 

Sociotechnical Systems theory explores the interplay between society and 

technology, positing that technological change and societal dynamics are deeply 

intertwined (Perrow, 1984; Hughes, 1983). The advent of robotics challenges 

existing social structures and labor relations, necessitating a reevaluation of work, 

education, and social policies. Inequality and Redistribution theories address how 

technological change can lead to uneven distribution of wealth and income (Piketty, 

2014; Atkinson, 2015). Robotics, by potentially replacing certain job categories, can 

contribute to increased economic inequality, prompting discussions about 

redistributive policies, such as universal basic income or retraining programs 
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(Acemoglu & Restrepo, 2017; 2018; Standing, 2011; Brynjolfsson & McAfee, 

2014). Together, these theoretical perspectives provide a comprehensive framework 

for understanding the multifaceted impacts of robotic automation. They offer 

insights into the economic, social, and policy implications of this technological 

revolution, guiding empirical investigations and policy formulations in the era of 

rapid technological advancement. 

 

Theoretical framework 

Incorporating robotic capital into the Cobb-Douglas production function offers a 

nuanced understanding of its impact on production processes, labor share, and 

income distribution in the context of both traditional physical capital and advanced 

automation. The augmented Cobb-Douglas model, reflecting this integration, is 

crucial for examining the evolving dynamics in an era increasingly dominated by 

automation. The standard Cobb-Douglas production function, as expanded in this 

context (Eq. 1), incorporates robotic capital (Rt) alongside traditional labor (L) and 

physical capital (Kt). This formulation is consistent with the works of Solow (1956) 

on growth theory and Douglas (1976) on the production theory, where the output 

elasticity of capital and labor determines the contribution of each factor to the overall 

production. The TFP (A) in the equation represents the efficiency of converting 

inputs into output, a concept extensively analyzed by Solow (1957) in his works on 

technological change. The inclusion Acaptures not just the traditional factors of 

production but also the efficiency gains from technological advancements, including 

robotics. The α parameter in the equation indicates the output elasticity of physical 

capital. The concept, central to the works of Cobb and Douglas (1928), demonstrates 

the responsiveness of output to changes in capital. The inclusion of robotic capital 

(Rt) suggests an extension of this theory, where robotics is seen as a distinct form of 

capital with its own elasticity, potentially differing from traditional capital forms. 

The wage rate, determined by the marginal product of labor, is a key concept in labor 

economics and is extensively discussed in the works of Mott (1988). In a competitive 

market, wages align with the value of the additional output produced by an extra unit 

of labor. The integration of robotic capital in production potentially alters this 

relationship, as robotics can substitute for or complement human labor, thus affecting 

the marginal product of labor and, consequently, wage rates. The substitution 

between labor and robotic capital highlights the relevance of theories by Acemoglu 

and Restrepo (2017; 2018), who investigated the implications of automation for 

labor demand. The equation's structure allows for the examination of how the 

introduction of robotic capital affects the labor share, potentially leading to a shift in 

the income distribution between labor and capital. By applying the Cobb-Douglas 

production function in the context of robotic capital, this framework provides a 
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theoretical foundation to understand how advancements in automation influence key 

economic variables. It sheds light on the changing landscape of labor share and 

income distribution in the age of automation, offering a valuable tool for analyzing 

the economic impacts of this technological evolution. 

In the book “Intertemporal and Strategic Modelling in Economics” by Orlando 

Gomes (2022), the relationship between technological advancements, particularly in 

the form of robotic capital, and the dynamics of income distribution in the production 

process is examined. Unlike physical capital, robotic capital is seen as a form of 

automation that substitutes labor in production, influencing both the wage rate and 

the rate of return for robotic capital. By differentiating the production function 

concerning labor and robotic capital, Gomes elucidates how these variables interact 

to determine the distribution of returns and the rate of return for physical capital in 

the production process. Herein lies a synthesis of the mathematical model derived 

from Gomes' work, outlining the complex relationships between technological 

advancement, labor, robotic capital, and income distribution. 

 

𝑌𝑡 = 𝐴. 𝐾𝑡
𝛼 . (𝐿 + 𝑅𝑡)1−𝛼 (1) 

 

Unlike physical capital, robotic capital is a form of automation and is considered a 

substitute for labor in production. This variable reflects the quantity or capability of 

robots in the production process. 

The wage rate is often determined by the marginal product of labor. In a competitive 

market, this can be expressed as: 

 

𝑀𝑃𝐿 = 𝑤𝑡 =  
𝜕𝑌𝑡

𝜕𝐿
 (2) 

 

Using the chain rule, differentiate the production function concerning labor (L): 

 

𝑀𝑃𝐿 = 𝑤𝑡 =
𝜕𝑌𝑡

𝜕𝐿
= (1 − 𝛼). 𝐴. 𝐾𝑡

𝛼 . (𝐿 + 𝑅𝑡)−𝛼 (3) 

 

The rate of return for robotic capital (rRt) is often determined by the marginal 

product of robotic capital. In a competitive market, this can be expressed as: 

 

𝑟𝑅𝑡 = 𝑀𝑃𝑅𝑡
=  

𝜕𝑌𝑡

𝜕𝑅𝑡
 (4) 
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Using the chain rule, differentiate the production function concerning robotic capital 

(Rt): 
 

𝑟𝑅𝑡 = 𝑀𝑃𝑅𝑡
=

𝜕𝑌𝑡

𝜕𝑅𝑡
=   (1 − 𝛼). 𝐴. 𝐾𝑡

𝛼 . (𝐿 + 𝑅𝑡)−𝛼 (5) 

 

Equate the expressions for the partial derivatives to the rate of return expressions: 

 

𝑤𝑡 =  𝑟𝑅𝑡 =  (1 − 𝛼). 𝐴. (
𝐾𝑡

𝐿 +  𝐴𝑡
)

𝛼

 (6) 

 

This result expresses the wage rate (wt) (and the rate of return for robotic capital 

(rRt)in terms of the parameters parameters 𝐴, 𝛼, and the quantities of physical 

capital (𝐾𝑡) ), labor (𝐿), and robotic capital (𝑟𝑅𝑡). The expressions show how these 

variables interact in determining the distribution of returns in the production process. 

The rate of return for physical capital is often determined by the marginal product of 

physical capital. In a competitive market, this can be expressed as: 

 

𝑟𝑡 = 𝑀𝑃𝑟𝑡
=  

𝜕𝑌𝑡

𝜕𝐾𝑡
 (7) 

 

Using the chain rule, differentiate the production function concerning physical 

capital (Kt): 

 

𝑟𝑡 = 𝑀𝑃𝑟𝑡
=

𝜕𝑌𝑡

𝜕𝐾𝑡
=   𝛼. 𝐴. 𝐾𝑡

𝛼−1. (𝐿 + 𝑅𝑡)1−𝛼 (8) 

 

Simplify the expression to obtain a more concise form: 

 

𝜕𝑌𝑡

𝜕𝐾𝑡
=   𝛼. 𝐴. (

𝐿 +  𝐴𝑡

𝐴𝑡
)

1−𝛼

 (9) 

 

Equate the expression for the partial derivative to the rate of return expression: 

 

𝑟𝑡 =   𝛼. 𝐴. (
𝐿 +  𝐴𝑡

𝐴𝑡
)

1−𝛼

 (10) 
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This result expresses the rate of return for physical capital (rt)in terms of the 

parameters 𝐴, 𝛼,  and the quantities of physical capital(𝐾𝑡), labor (𝐿), and robotic 

capital (𝑟𝑅𝑡). The expression shows how these variables interact in determining the 

rate of return for physical capital in the production process. 

 

Intensive form of the production function: 

 

𝑦𝑡 = 𝐴. 𝐾𝑡
𝛼 . (1 + ∅𝑡)1−𝛼 (11) 

 

where ytis output per unit of labor, rtis the rate of return for physical capital, 𝑘𝑡 is 

physical capital per unit of labor, 𝑅𝑡 is robotic capital, and ∅𝑡 is defined as ∅𝑡 =
𝐿. 𝑅𝑡 , representing the ratio of robotic capital to labor. 

The marginal product of physical capital (MPKt
) per unit of labor can be expressed 

using the intensive form: 

 

𝑀𝑃𝐾𝑡
=  

𝜕𝑦𝑡

𝜕𝑘𝑡
=  𝛼. 𝐴. (1 + ∅𝑡)−𝛼 (12) 

 

The rate of return for robotic capital (rRt) is given by the marginal product of robotic 

capital per unit of labor: 

 

𝑟𝑅𝑡 =  
𝜕𝑦𝑡

𝜕∅𝑡
=  𝛼. 𝐴. 𝑘𝑡 . (1 + ∅𝑡)−𝛼 (13) 

 

The income share of capitalists is given by the sum of returns from physical and 

robotic capital per unit of labor divided by the total output per unit of labor (yt): 

 
𝑟𝑡. 𝑘𝑡 + 𝑅𝑡 . ∅𝑡

𝑦𝑡
=

𝛼. 𝐴. (1 + ∅𝑡)−𝛼. 𝑘𝑡 + 𝛼. 𝐴. 𝑘𝑡. (1 + ∅𝑡)−𝛼. ∅𝑡

𝐴. 𝑘𝑡. (1 + ∅𝑡)1−𝛼
 (14) 

 

Simplify the expression to obtain a more concise form: 

 
𝑟𝑡. 𝑘𝑡 + 𝑅𝑡 . ∅𝑡

𝑦𝑡
=

𝛼. (1 + ∅𝑡)−𝛼. 𝑘𝑡 + 𝛼. ∅𝑡. (1 + ∅𝑡)−𝛼

(1 + ∅𝑡)1−𝛼
 (15) 
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Combine terms to obtain the final expression: 

 
𝑟𝑡. 𝑘𝑡 + 𝑅𝑡 . ∅𝑡

𝑦𝑡
=

1 + ∅𝑡

𝛼 + ∅𝑡
 (16) 

 

This result expresses the income share of capitalists in terms of the parameters 𝛼 and 

∅𝑡, and, represents the ratio of robotic capital to labor. It indicates how the income 

share of capitalists changes with the participation of robotic capital in the production 

process.  

Moreover, the labor share (wt/yt) can be expressed as in Eq.17. 

 

𝑤𝑡

𝑦𝑡
=

(1 − 𝛼). 𝐴. (
𝐾𝑡

𝐿+ 𝐴𝑡
)

𝛼

𝐴. 𝐾𝑡
𝛼 . (1 + ∅𝑡)1−𝛼

=  
1 − 𝛼

1 + ∅𝑡
 (17) 

 

This equation (Eq. 17) characterizes the relationship between the wage rate (wt)and 

the output per unit of labor(yt). In particular, it reveals that the ratio of the wage rate 

to output per unit of labor(wt/yt) is influenced by two critical factors. Firstly, 

Firstly, (1 − 𝛼) represents the complementarity between labor and robotic capital, 

with 𝛼 being the output elasticity of physical capital. This term signifies the 

proportion by which the wage rate declines concerning the substitution of labor with 

robotic capital in the production process. Secondly,(1 + ∅𝑡) introduces the impact 

of the ratio of robotic capital to labor (∅𝑡),  indicating the extent to which automation 

and robotics contribute to the overall productivity. Therefore, the equation captures 

the nuanced dynamics of income distribution and the changing role of labor in the 

presence of robotic capital. 

In our empirical analysis, we aim to investigate the impact of robotic capital, 

traditional physical capital, technological change, human capital, and trade 

globalization on the dynamics of labor share in the context of robotic automation. 

We will focus on the five countries that have extensively utilized industrial robotic 

applications between 2010 and 2023. These countries are China, Germany, Japan, 

South Korea, and the United States. As of 2022, the combined industrial robotic 

installations in these nations account for a significant 79.2% of the global total 

(Müller, 2023).  

In examining the dynamics of labor income share within the context of robotic 

automation in five high-level automation countries, certain expectations are 

formulated for the signs of the independent variables. The annual installation of 

industrial robots (IIR) is anticipated to have a negative impact, reflecting the notion 

that higher robot installations could increase automation, consequently diminishing 
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the share of income allocated to labor. Similarly, gross fixed capital formation 

(GFC), representing increased investment in physical capital and automation 

technologies, is expected to exhibit a negative association with labor income share. 

Conversely, variables such as researchers in research and development (RD) and 

human capital (HC) are anticipated to have positive effects. Higher efforts in 

research and development are expected to lead to technological advancements, 

positively influencing labor income share through increased productivity. 

Investments in human capital, including education and skills development, are 

expected to enhance workforce productivity, contributing to a higher labor income 

share. Lastly, the trade of goods and services (TRD) is expected to have a negative 

association, as increased trade, particularly in a globalized context, may expose 

workers to competitive pressures, potentially resulting in a decline in labor income 

share. These expectations are guided by economic principles and will be further 

explored and validated through empirical analysis of the specific data. 

 

3. Methodology and empirical data  

Prior to parameter estimation, a series of diagnostic tests were employed to ensure 

the selection of an appropriate method and validate the model. These tests 

encompassed analyses of the correlation matrix, assessment of cross-sectional 

dependency, evaluation of slope homogeneity, examination of autocorrelation, 

scrutiny for heteroskedasticity, consideration of variance inflation factors, and 

thorough assessments for endogeneity. The determination between random effect, 

fixed effect, and mixed effect models was made using the Hausman test. Based on 

the outcomes of these assessments, it was concluded that the most suitable parameter 

estimation methods for heterogeneous panel data were the Arellano-Bond, 

Generalized Estimating Equations, Driscoll-Kraay, and Arellano, Froot, and Rogers 

methods, and subsequent parameter estimates were carried out accordingly. 

The use of the Arellano-Bond dynamic panel data estimator, specifically the system 

GMM, is justified for several reasons. It addresses endogeneity concerns by 

incorporating lagged endogenous variables as instruments. The system GMM is 

known for efficiently handling both individual and time effects, making it suitable 

for dynamic panel data models. Its incorporation of fixed effects modeling 

accommodates unobserved heterogeneity, and the model's ability to capture dynamic 

relationships over time addresses potential serial correlation. Heteroskedasticity-

robust standard errors enhance robustness against homoskedasticity violations, 

making the system GMM an efficient and flexible choice for dynamic panel data 

analysis. 

The choice of the (GEE) population-averaged model estimator for panel data time 

series analysis, despite heteroskedasticity, is justified for several reasons. GEE is 
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advantageous when estimating population-averaged effects and accommodating 

within-subject correlation. Its robustness to misspecification of correlation structure 

makes it suitable for situations with heteroskedasticity. GEE focuses on population-

averaged effects, providing meaningful estimates interpretable in the study 

population context. Its flexibility in handling time-dependent covariates and ease of 

implementation make it a pragmatic choice, addressing challenges associated with 

data distribution or limited within-subject correlation information. 

The selection of the Driscoll-Kraay Fixed Effect Estimator is particularly apt when 

there are indications of heteroskedasticity in the data, and it addresses concerns 

related to potential non-constant variance across panels. By employing 

heteroskedasticity-robust standard errors, our regression results become more 

reliable, offering valid inference even when the assumption of homoskedasticity is 

violated. This approach enhances the robustness of our estimates, allowing for more 

accurate statistical inferences in the presence of varying levels of heteroskedasticity 

across panels.  

The Arellano, Froot, and Rogers (AFR) estimator is a suitable choice, especially for 

addressing heteroskedasticity in the model. Known for its robustness to panel data 

heteroskedasticity, it provides reliable parameter estimates in the presence of varying 

variance levels across observations. AFR handles endogeneity concerns effectively 

and remains consistent in the presence of cross-sectional dependence, showcasing 

versatility within the class of generalized method of moments estimators. Its 

adaptability to structural breaks or shifts further enhances its utility in handling 

diverse diagnostic challenges. 

 

Empirical model 

Table 1 provides a comprehensive summary of the dependent and independent 

variables, their abbreviations, proxies, and the respective data sources for our 

empirical model. 

 
Table 1 Variables 

Variable Notation Proxy Database 

Labor income 

share 

LSI Labor income share as a percent of GDP (%) ILO 

Robotic capital IIR Annual installation of industrial robots IRF 

Physical capital GFC Gross fixed capital formation (% of GDP) WB 

Trade 

globalization 

TRD Trade of goods and services (% of GDP) WB 

Technological 

change 

RD Researchers in R&D (per million people) WB 
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Human capital HC Index of human capital per person, based on years 

of schooling and returns to education 

PWT 

Source: ILO (International Labor Organization), IRF (International Federation of Robotics), 

WB (World Bank), PWT (Penn World Table).  

 

The functional form of the empirical model represented in Eq.18 aims to analyze 

how robotic capital, traditional physical capital, technological change, human 

capital, and trade globalization influence the dynamics of labor share in the context 

of robotic automation.  

 

𝐿𝑎𝑏𝑜𝑟 𝑆ℎ𝑎𝑟𝑒 𝑜𝑓 𝐼𝑛𝑐𝑜𝑚𝑒

=  𝑓 (
𝑅𝑜𝑏𝑜𝑡𝑖𝑐 𝐶𝑎𝑝𝑖𝑡𝑎𝑙, 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝐶𝑎𝑝𝑖𝑡𝑎𝑙, 𝐻𝑢𝑚𝑎𝑛 𝐶𝑎𝑝𝑖𝑡𝑎𝑙, Technology,

Trade Globalization
)  

(18) 

 

𝐿𝑛𝐿𝑆𝐼𝑖𝑡 =  𝛽0 + 𝛽1. 𝐿𝑛𝐼𝐼𝑅𝑖𝑡 + 𝛽2. 𝐿𝑛𝐺𝐹𝐶𝑖𝑡 + 𝛽3. 𝐿𝑛𝑅𝐷𝑖𝑡 +  𝛽4. 𝐿𝑛HC𝑖𝑡

+ 𝛽5. 𝐿𝑛TRD𝑖𝑡 + 𝜀𝑖𝑡 
(19) 

 

In the model represented in Eq. 19, we aim to analyze the determinants of the Labor 

Share Index (LSI)for a given countryi at a specific time. The dependent 

variable (LSIit) represents the proportion of national income attributed to labor in 

the production process. The variableIIRit represents Industrial Robotization, 

measured by the annual installation of industrial robots. This variable aims to capture 

the influence of automation technologies on labor share.GFCit stands for Gross Fixed 

Capital Formation, expressed as a percentage of GDP. This variable reflects the role 

of physical capital in shaping the distribution of income between labor and 

capital. RDit represents Technological Change, measured by the number of 

researchers in Research and Development per million people. This variable aims to 

capture the impact of technological advancements on labor share. HCit denotes 

Human Capital, represented by an index based on years of schooling and returns to 

education. This variable accounts for the influence of education and skills on the 

contribution of labor to national income. TRDit signifies Trade Globalization, 

measured as the percentage of trade in goods and services relative to GDP. This 

variable captures the influence of international trade dynamics on labor share. 

𝛽0 is the intercept term and represents the expected value of the labor income share 

when all the independent variables are zero. 𝛽1 … 𝛽5 are the slope coefficients 

associated with the respective independent variables. They indicate the expected 

change in the labor income share for a one-unit change in each independent variable, 

holding other variables constant. The error term (𝜀𝑖𝑡) accounts for unobservable or 

omitted factors that may affect labor share but are not explicitly included in the 



 
 

 
 

 

Erkişi, K., Çetin, M., (2025) 

The Dynamics of Labor Income Share in an Era of Robotic Automation: A Panel Data Analysis in High-Level 
Automation Countries 

 

 
 

Studia Universitatis “Vasile Goldis” Arad. Economics Series Vol 35 Issue 1/2025 

ISSN: 1584-2339; (online) ISSN: 2285 – 3065 

Web: publicatii.uvvg.ro/index.php/studiaeconomia. Pages 113-139 

 

126 

model. This empirical model allows for the examination of the complex interplay 

between industrial robotization, globalization, technological development, human 

capital, trade dynamics, and their collective impact on the distribution of income 

between labor and capital across different countries and over time. 

  
Table 2 Descriptive Statistics 

 Variable  Obs  Mean  Std. Dev.  Min  Max 

 LSI 70 56.20 4.64 41.90 63.42 

 IIR 70 50663 60754 16904 310300 

 GFC 70 27.75 8.57 18.31 44.52 

 TRD 70 55.02 26.66 23.38 105.57 

 RD 70 4390 1991 863 9081 

 HC 70 3.394 0.446 2.404 3.765 

 

Table 2 provides a comprehensive overview of the descriptive statistics for the key 

variables under consideration in our analysis. For the labor income share (LSI), the 

average percentage of GDP attributable to labor income is 56.20%, with a standard 

deviation of 4.64%. The annual installation of industrial robots (IIR) ranges from 

16,904 to 310,300 units, with a mean of 50,663 and a standard deviation of 60,754. 

Gross fixed capital formation as a percentage of GDP (GFC1) has a mean of 27.75%, 

varying between 18.31% and 44.52%, with a standard deviation of 8.57%. Trade 

globalization (TRD1) is represented by the percentage of GDP attributed to the trade 

of goods and services, with a mean of 55.02%, a standard deviation of 26.66%, and 

a range from 23.38% to 105.57%. Technological change (RD2), measured as the 

number of researchers in R&D per million people, shows an average of 4,390 

researchers, with a standard deviation of 1,991, and a range from 863 to 9,081 

researchers. Finally, the index of human capital per person (HC), based on years of 

schooling and returns to education, exhibits a mean of 3.394, a standard deviation of 

0.446, and varies between 2.404 and 3.765.  

 

4. Empirical results 

Table 3 presents the matrix of correlations among the variables included in our 

analysis. The correlation coefficients provide insights into the strength and direction 

of relationships between pairs of variables. 
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Table 3 Matrix of correlations 

  Variables   (1)   (2)   (3)   (4)   (5)   (6) 

 (1) LSI 1.000 

 (2) IIR -0.367 1.000 

 (3) GFC -0.672 0.627 1.000 

 (4) TRD 0.217 0.342 -0.052 1.000 

 (5) RD 0.360 -0.287 -0.418 -0.586 1.000 

 (6) HC 0.610 -0.583 -0.875 -0.275 0.788 1.000 

 

In Table 3, the labor income share (LSI) exhibits positive correlations with 

technological change (RD1) and human capital (HC) at 0.360 and 0.610, 

respectively. On the other hand, it displays negative correlations with robotic capital 

(IIR) and physical capital (GFC1) at -0.367 and -0.672, indicating an inverse 

relationship. Robotic capital (IIR) shows negative correlations with human capital 

(HC) and physical capital (GFC1) at -0.583 and -0.627, respectively. Physical capital 

(GFC1) has a negative correlation with technological change (RD1) at -0.418. These 

correlation patterns offer valuable insights into the interplay among the variables and 

lay the foundation for understanding potential multicollinearity or complementary 

dynamics in our subsequent regression analysis. 

Prior to conducting the regression analysis, a critical step involves assessing the 

stationarity of the variables through a battery of unit root tests. The unit root tests 

employed include the Cross-Sectional Augmented Dickey-Fuller (CADF), Pesaran’s 

(2007) unit root test (CIPS), Harris-Tzavalis unit-root test (HT), Breitung unit-root 

test, Im-Pesaran-Shin unit-root test (IPS), and Fisher-type unit-root test (Fisher). The 

null hypothesis for these tests is that the panels contain unit roots. Stationarity is a 

crucial consideration, as non-stationary time series data can lead to spurious 

regression results. The outcomes of these tests, presented in Table 4, inform us about 

the presence or absence of unit roots and guide subsequent decisions on whether 

differencing is necessary for achieving stationarity in the data.  

 
Table 4 Unit Root Test 

Var. Lev. 
CADF CIPS IPS Fisher HT Breitung 

t-bar CIPS Stat W-t-bar z-stat. rho lambda 

LSI level -1.436 -1.715 0.6381 -1.8714 0.7239 0.0141 

 1st diff. -3.761* -4.589* 4.1706* -4.1731* -0.0424* 3.1629* 

IIR level -1.359 -1.624 1.1225 1.6197 0.9222 1.5076 

 1st diff. -3.249* -3.249* -4.7422* -4.3291* -0.0033* 4.5176* 

GFC  level -2.687** -2.076 0.359 1.7704 0.6826 -0.0376 

 1st diff. . -3.446* 6.4557* 6.8223* 0.1871* 1.6551** 

TRD level -1.817 -1.817 -2.0634 -2.6465* 0.7935 1.1909 

 1st diff. -3.835* -3.835* -4.3994* . -0.0175* -2.0765** 
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RD level -2.184 -2.184 0.1586 -0.0506 0.7808 2.0407 

 1st diff. -3.169* -3.169* -4.7263* -5.3738* 0.2117* 1.724** 

HC level -0.87 -0.579 3.6883 -6.0429* 1.0521 6.2843 

 1st diff. -6.101* -2.783* -2.917* . 0.6492** -1.5995** 

Note: * p<.01, ** p<.05. 

 

Table 4 presents the results of the unit root tests for each variable at both the level 

and first difference. The outcomes from unit root tests, including CIPS, IPS, HT, and 

Breitung, suggest that initially, all series exhibit a unit root at the level, indicating 

non-stationarity. However, this non-stationarity is rectified when taking the first 

difference. Further examination using the CADF test highlights that the GFC series 

is stationary at the level, while the other series achieve stationarity when differenced 

for the first time. Similarly, Fisher test results indicate that TRD is stationary at the 

level, whereas the remaining series attain stationarity through first differencing. 

Consequently, the observed stationarity at the level or after the first differencing 

provides assurance that our panel data analysis results remain robust and unaffected. 

The tests for cross-section independence and homogeneity are crucial in the selection 

of appropriate testing methods. In Table 5, the results of Cross-section Dependence 

(CD) tests, as well as tests for Slope Homogeneity (adj.Delta and Swamy S χ²), are 

presented. The CD tests, including CD (Pesaran 2015, 2021), CDw Juodis, (Reese, 

2021), CDw+ (Fan et. al., 2015), and CD* (Pesaran, Xie, 2021), assess the presence 

of cross-sectional dependence, while adj. Delta and Swamy S χ² specifically test for 

slope homogeneity. 

 
Table 5 Slope Homogeneity and Cross-section Independence Tests 

CD Tests Homogeneity 

CD CDw CDw+ CD* adj.Delta Swamy S (χ²) 

-1.090 

(0.277) 

    2.710* 

(0.007) 

15.530* 

(0.000) 

4.590*  

(0.000) 

-5.525* 

(0.000) 

446.32* 

(0.000) 

Note: * p<.01, ** p<.05 p-values in parenthesis. 

 

In Table 4, the CD test shows a test statistic of -1.090 with a p-value of 0.277, 

suggesting no significant evidence of cross-sectional dependence. However, when 

transitioning to the CDw test, the test statistic is 2.710 with a p-value of 0.007, 

indicating evidence of cross-sectional dependence at a significance level of 0.01. The 

CDw+ test produces a test statistic of 15.530 with a p-value of 0.000, providing 

strong evidence against cross-sectional independence. Moving on to CD*, which 

incorporates four principal components, the test statistic is 4.590 with a p-value of 

0.000, further supporting the presence of cross-sectional dependence. These results 
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collectively suggest that various CD tests consistently indicate cross-sectional 

dependence in the data. 

Now, turning to tests for Slope Homogeneity, the “adjusted delta test” produces a 

test statistic of -5.525 and a p-value of 0.000, while the Swamy S χ² test yields a test 

statistic of 446.32 with a p-value of 0.000. Both tests strongly reject the null 

hypothesis of slope homogeneity, indicating that the assumption of equal slopes 

across cross-sectional units is not supported.  

We examine the presence of individual and time effects in our regression model 

through a series of diagnostic tests namely the Likelihood Ratio (LR) test, F test, 

Lagrange Multiplier (LM) test, and the Hausman test. 

 
Table 6 Test for Individual and Time Effects 

 Individual Effect Time Effect Mix Effet 

LR 5.88  (p = 0.008) 0.00 (p = 1.000) 5.88  (p = 0.0528) 

F 12.82 (p = 0.0000) 1.14 (p = 0.3508)  

LM 0.00 (p = 1.0000)   

Hausman Test  χ2 (6) = 13.63 (p = 0.0181)  

 

In Table 6, we present the results of tests aimed at assessing the presence of 

individual and time effects in our regression model. The LR test reveals compelling 

evidence (LR test statistic = 5.88, p = 0.008) supporting the existence of individual 

effects, indicating that individual entities significantly contribute to the model. In 

contrast, the LR test for time effects shows no significant evidence (LR test statistic 

= 0.00, p = 1.000), suggesting that temporal variations do not have a pronounced 

impact on the model. The LR test for mix effects yields a borderline significance 

(LR test statistic = 5.88, p = 0.0528), hinting at a potential mix effect, though the 

evidence is not conclusive. 

Further reinforcing the findings, the F test affirms the strong presence of individual 

effects (F test statistic = 12.82, p = 0.0000), while providing no strong evidence of 

time effects (F test statistic = 1.14, p = 0.3508). LM test, however, does not offer 

significant support for individual effects (LM test statistic = 0.00, p = 1.000), 

suggesting that individual entities may not significantly contribute to the model 

according to this particular test. Unfortunately, information about the LM test for 

time effects is not provided, leaving the result inconclusive. 

Lastly, the Hausman test, comparing the efficiency of the fixed effects model to the 

random effects model, yields a test statistic of χ² (6) = 13.63 with a p-value of 0.0181. 

This suggests that the fixed effects model may be more appropriate, implying a 

preference for considering individual entity effects while accounting for efficiency. 

In conclusion, the cumulative evidence strongly supports the inclusion of individual 
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effects in the model, with the choice between fixed and random effects models 

leaning towards the based on the Hausman test results.  

 

4.1. Findings 

Table 7 shows the outcomes of the empirical model investigates the logarithmic 

transformation of labor income share (LnLSI) concerning key factors, including 

annual installations of industrial robots (LnIIR), gross fixed capital formation 

(LnGFC), researchers in research and development (LnRD), human capital index 

(LnHC), and trade of goods and services (LnTRD).  The results of parameter 

estimations, obtained through the four selected and appropriate forecasting methods 

detailed in the “Methodology” section, are presented in Table 7. 

 
Table 7 Parameter Estimations 

LnLSI 

Arellano-Bond 

Estimator 

Generalized 

Estimating 

Equations 

Driscoll-Kraay 

Estimator  

Arellano, Froot, 

and Rogers 

Estimator 

LnIIR -0.0620*** -0.0403** -0.0389*** -0.0794*** 

 (-4.444) (-2.391) (-5.348) (-3.880) 

LnGFC -0.278*** -0.149 -0.276* -0.259* 

 (-2.769) (-1.249) (-2.720) (-1.812) 

LnTRD -0.0722** -0.0913*** -0.0935** -0.0574 

 (-1.984) (-3.440) (-4.354) (-1.257) 

LnRD 0.515*** 0.364*** 0.375** 0.508*** 

 (6.525) (3.560) (4.406) (4.677) 

LnHC 0.527 0.331 0.620* 0.844* 

 (1.597) (1.032) (2.211) (1.779) 

Cons. 6.465*** 2.333** 3.011*** 5.786*** 

  (6.154) (2.227) (7.203) (4.244) 

Note: *** p<0.01, ** p<0.05, * p<0.1; z-statistics in parentheses. 

 

Utilizing the Arellano-Bond Estimator, the results indicate significant associations. 

The negative coefficient of -0.0620 for LnIIR suggests a 0.0620% decrease in labor 

income share for a 1% increase in industrial robot installations, highlighting the 

potential impact of automation on income distribution. Similarly, statistically 

significant negative coefficients for LnGFC (-0.278) and LnTRD (-0.0722) imply a 

0.278% and 0.0722% decrease in labor income share for a 1% increase in gross fixed 

capital formation and trade of goods and services, respectively. Conversely, the 

positive coefficient of 0.515 for LnRD suggests a 0.515% increase in labor income 

share for a 1% increase in researchers in research and development, emphasizing the 
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positive influence of technological advancements on productivity. The positive but 

statistically insignificant coefficient of 0.527 for LnHC indicates that the human 

capital index might not significantly affect variations in labor income share. 

Using the Generalized Estimating Equations (GEE), the results maintain valuable 

insights. The negative coefficient of -0.0403 for LnIIR suggests a 0.0403% decrease 

in labor income share for a 1% increase in annual installations of industrial robots, 

underlining the potential impact of automation. For LnGFC, the negative coefficient 

of -0.149 indicates a 0.149% decrease in labor income share for a 1% increase in 

gross fixed capital formation, though not statistically significant. Conversely, the 

positive coefficient of 0.0913 for LnTRD suggests a 0.0913% increase in labor 

income share for a 1% increase in researchers in research and development, 

highlighting the positive influence of research efforts. Similarly, the positive 

coefficient of 0.364 for LnRD indicates a 0.364% increase in labor income share for 

a 1% increase in researchers in research and development. However, the negative 

but statistically insignificant coefficient of -0.331 for LnHC suggests that the human 

capital index may not significantly affect variations in labor income share. 

The Driscoll-Kraay estimator provides insights into the relationship between LnLSI 

and key determinants. The negative and highly statistically significant coefficient of 

-0.0389 for LnIIR suggests a 0.0389% decrease in labor income share for a 1% 

increase in industrial robot installations. For LnGFC, the negative coefficient of -

0.276 indicates a 0.276% decrease in labor income share for a 1% increase in gross 

fixed capital formation. The positive and statistically significant coefficient of 

0.0935 for LnTRD suggests a 0.0935% increase in labor income share for a 1% 

increase in researchers in research and development. Similarly, the positive and 

statistically significant coefficient of 0.375 for LnRD indicates a substantial 0.375% 

increase in labor income share for a 1% increase in researchers in research and 

development. The negative and statistically significant coefficient of -0.620 for 

LnHC suggests a significant 0.620% decrease in labor income share for a 1% 

increase in the human capital index. 

The Arellano, Froot, and Rogers estimator further explore the relationship between 

LnLSI and its determinants. The negative and highly statistically significant 

coefficient of -0.0794 for LnIIR suggests a 0.0794% decrease in labor income share 

for a 1% increase in industrial robot installations. For LnGFC, the negative 

coefficient of -0.259 indicates a 0.259% decrease in labor income share for a 1% 

increase in gross fixed capital formation. The negative and statistically significant 

coefficient of -0.0574 for LnTRD implies a 0.0574% decrease in labor income share 

for a 1% increase in researchers in research and development. The positive and 

statistically significant coefficient of 0.508 for LnRD suggests a substantial 0.508% 

increase in labor income share for a 1% increase in researchers in research and 
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development. The positive and statistically significant coefficient of 0.844 for LnHC 

indicates a significant 0.844% increase in labor income share for a 1% increase in 

the human capital index. These findings provide comprehensive insights into the 

nuanced dynamics between industrial robots, capital formation, research efforts, 

human capital, and labor income share in the context of robotic automation. 

 

4.2. Model validity  

We conducted the model validity tests to assess the integrity of our empirical model 

and ensure the soundness of its underlying assumptions.   These tests serve as crucial 

benchmarks to evaluate specific aspects of the model, including the presence of 

heteroskedasticity, autocorrelation patterns, multicollinearity through Variance 

Inflation Factor (VIF), potential endogeneity issues, and the adequacy of the model 

in capturing the underlying data structure. The results of these tests are presented in 

Table 8. 

 
Table 8 Model Validity Tests 

Heteroskedasticity test 

  (H0: No heteroskedasticity) 

W0    = 9.177 ; p = 0.000 

W50  = 3.492 ; p = 0.012 

W10  = 6.412 ; p = 0.001 

Autocorrelation Test 

  (H0: No autocorrelation) 

DW = 0.811< 2 

LBI  = 1.001< 2 

Mean VIF 2.93 < 5 

Endogeneity 

 ( H0: Variables are exogenous) 

Durbin (score) χ2 (1) = 1.190; p = 0.275 

Wu-Hausman =  1.063; p = 0.307 

Ramsey RESET –( H0: No omitted 

variables) 
F = 1.82;  p =  0.1539 

 

In Table 8, The results of the heteroskedasticity test, which assesses the presence of 

non-constant variance in the residuals, are presented in the summary table along with 

the White test statistics (W0, W50, W10) and their associated p-values. White test 

statistics, the values of W0, W50, and W10 are 9.177, 3.492, and 6.412, respectively. 

These test statistics are associated with degrees of freedom (df) and p-values. The 

null hypothesis for the White test is that the variance of the residuals is constant. The 

p-values associated with W0, W50, and W10 are all below the significance level of 

5%, indicating strong evidence against the null hypothesis of homoskedasticity. 

Therefore, based on these results, we reject the null hypothesis and conclude that 

there is evidence of heteroskedasticity in the residuals. 

We applied two distinct tests for the presence of autocorrelation: the modified 

Bhargava et al. Durbin-Watson test (DW) and the Baltagi-Wu LBI test, both operate 
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under the null hypothesis of no autocorrelation. The results indicate that, for the 

modified Bhargava et al. DW test, the computed statistic is 0.811. In the context of 

this test, values close to 2 suggest the absence of autocorrelation, and our obtained 

value aligns with this expectation. Moving on to the LBI test, the computed statistic 

is 1.001. Once again, this value is consistent with the absence of autocorrelation. 

These results collectively suggest that there is no substantial evidence to reject the 

null hypothesis of no autocorrelation in our model. This implies that the residuals do 

not exhibit systematic patterns of correlation over time, reinforcing the reliability of 

our regression analysis. 

We use the variance inflation factor (VIF) test to quantify the inflation in the variance 

of estimated regression coefficients when predictor variables are correlated. The 

Mean VIF represents the average VIF across all variables in the model. In our model, 

the mean VIF is 2.93, which is relatively moderate. As a rule of thumb, a mean VIF 

below 5 is often considered acceptable, indicating that multicollinearity is not a 

severe problem. 

In Table 8, the null hypothesis for both tests is that the variables under consideration 

are exogenous. The results, however, suggest that we fail to reject the null hypothesis 

for both tests. The Durbin (score) chi-squared test yields a test statistic of 1.190 with 

a p-value of 0.275, while the Wu-Hausman F-test provides a statistic of 1.063 with 

a p-value of 0.307. These relatively high p-values indicate that we do not have 

sufficient evidence to reject the hypothesis of exogeneity for the variables in our 

model. In simpler terms, the results do not support the presence of endogeneity issues 

in our model, suggesting that the included variables are likely exogenous and, 

therefore, can be considered predetermined or unrelated to the error term.  

In assessing the model specification, we conducted the Ramsey RESET test using 

powers of the fitted values of LSI. The null hypothesis (Ho) for this test is that the 

model has no omitted variables, indicating that the current model is correctly 

specified. The test result yields an F-statistic of 1.82 with an associated p-value of 

0.154. Given the significance level commonly set at 0.05, the p-value of 0.154 

suggests that we do not have sufficient evidence to reject the null hypothesis. 

Therefore, based on the Ramsey RESET test, there is no strong indication of omitted 

variables in the model, indicating that the current specification appears to be 

adequate in capturing the relationships within the data.  

In validating our regression model, significant evidence against homoskedasticity 

was found in the heteroskedasticity tests, prompting the recommendation to employ 

estimation methods accommodating this issue. Autocorrelation tests indicated the 

absence of systematic patterns in residuals over time, supporting the reliability of 

our regression analysis. Moreover, endogeneity tests suggested that the model's 

variables are likely exogenous, reinforcing the credibility of our results. Overall, 
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addressing heteroskedasticity concerns through appropriate estimation methods is 

crucial for robust statistical inferences. 

 

5. Conclusions 

The comprehensive analysis of the empirical model and its results, encompassing 

the Arellano Bond Estimator, Generalized Estimating Equations, Driscoll-Kraay 

Estimator, and Arellano, Froot, and Rogers Estimator, along with various model 

validity tests, offers insightful conclusions about the factors influencing the labor 

income share. 

A significant and consistent negative relationship is observed between the increase 

in industrial robot installations and labor income share. The coefficients range from 

-0.0389 to -0.0794, signifying that a 1% increase in the use of industrial robots leads 

to a decrease in labor income share by approximately 0.0389% to 0.0794%. This 

finding is robust across different estimation methods, illustrating the profound 

impact of automation on diminishing labor's share of income. This trend is 

particularly noteworthy in the context of the current trajectory of increased 

automation in various industries. Both Gross Fixed Capital Formation and Trade of 

Goods and Services exhibit a negative impact on labor income share, although the 

magnitude and significance of these effects vary across different estimators. The 

negative coefficients for Gross Fixed Capital Formation suggest that a 1% increase 

in capital formation is generally associated with a decrease in labor income share, 

potentially indicating a shift towards more capital-intensive production processes. 

The relationship with Trade of Goods and Services is predominantly negative, 

implying that an increase in trade activities tends to reduce labor income share, 

though this relationship is not uniformly significant across all models. This 

complexity could reflect the multifaceted nature of trade and its varying impact on 

labor income. Also, there is a uniformly positive relationship between research and 

development activities and labor income share across all estimators. The coefficients 

range from 0.364 to 0.515, indicating that a 1% increase in research in R&D is 

associated with an increase in labor income share. This underscores the beneficial 

impact of R&D on labor income, likely through innovation and productivity 

enhancements. On the other hand, the relationship between the human capital index 

and labor income share shows mixed results. While some estimators indicate a 

positive effect, others do not find it statistically significant. The coefficients vary 

from 0.331 to 0.844, suggesting that an increase in human capital may contribute to 

an increase in labor's share of income. However, the inconsistency across different 

estimation methods introduces some uncertainty regarding the strength and direction 

of this relationship. 
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Our findings that indicate a consistent negative relationship between robotic capital 

and labor income share are in line with the research by Acemoglu and Restrepo 

(2017, 2018), who also found that automation negatively impacts employment and 

wages, especially for lower-skilled workers. This aligns with your observation that 

increased industrial robot installations lead to a reduction in the labor share of 

income, suggesting that automation may be a contributing factor to increasing 

income inequality by displacing labor. Our analysis also reveals a positive 

relationship between R&D activities, human capital development, and labor income 

share. This is consistent with the optimistic view held by Aghion et al. (2019), who 

argue that innovation and education can drive economic growth and improve labor 

market outcomes. This suggests that investments in human capital and innovation 

can mitigate some of the adverse effects of robotic automation on labor share. 

This work extends the discussion on the impact of globalization and physical capital 

formation on labor income share, adding complexity to the findings of Rodrik (2016) 

and Autor et al. (2013), who have explored the displacement effect of trade and 

technology on labor. Findings suggest a nuanced view where globalization and 

capital formation have a differential impact on labor share, highlighting the 

importance of considering the specific context of automation's integration into the 

economy. By concentrating on the five countries responsible for a significant portion 

of global industrial robotic installations, the study provides a unique insight into how 

highly automated economies are navigating the challenges and opportunities 

presented by robotic automation. This geographical and temporal specificity offers 

a deeper understanding of automation's impacts, complementing broader analyses 

provided by authors like Graetz and Michaels (2015), who look at automation's 

effects on a global scale. 

The expansion of industrial robots and automation, along with the dynamics of 

capital formation and trade, exert significant downward pressures on labor income 

share. In contrast, research and development activities, and potentially human capital 

enhancement, offer avenues for increasing labor's share of income. This intricate 

interplay of factors highlights the complex nature of income distribution in the face 

of contemporary economic changes. The most striking conclusion drawn from the 

analysis is the significant and consistent negative impact of automation, specifically 

the increase in industrial robot installations, on the labor income share. This finding 

is critical as it highlights a fundamental shift in the income distribution dynamics 

due to technological advancements. It underscores the reality that as industries 

increasingly adopt automation and robotic technology, the proportion of income 

allocated to labor decreases. This trend is a clear indication of how technological 

advancements, while driving efficiency and productivity, also have profound 

implications for the labor market and income distribution. 
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This key insight calls for a reevaluation of economic and social policies to address 

the challenges posed by automation. It suggests that without intervention, the 

growing use of industrial robots and automation may lead to a decrease in the relative 

income of workers, potentially exacerbating income inequality. Therefore, strategies 

such as investing in human capital, enhancing skills and education, and revising 

labor market policies may become essential to counterbalance the displacement 

effects of automation and ensure a more equitable distribution of the economic 

benefits of technological progress. In resulting, the findings emphasize the need to 

consider the impacts of automation, capital formation, trade, technological 

advancements, and human capital development in shaping income distribution 

between labor and other production factors. As economies continue to evolve with 

rapid technological changes and globalization, future policies, and economic 

strategies should address these factors to ensure balanced and equitable economic 

growth. 
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